Cabulator Building instructions v1.0

Table of contents

PCB layout 3
Components 4
Build sequence
Drill template
Off board wiring7
Switches
SW1 8
Hardwired
DP3T switch
XLR Out and SW2
Modifications10
Modded version
Optimized version 11
Troubleshooting
Schematics13

Read this <u>entire</u> manual <u>thoroughly</u> before you start building the effect! There are a lot of available mods and you should choose which one you want to incorporate <u>before</u> starting your build.

Last update: 18-02-2019

PCB layout

Dimensions: 75 mm x 54,6 mm 2.95 inch x 2.15 inch

Components

Name	Value	Comment	Name	Value	Comment
C1	470n	SMF/MKT/Wima	Q1	2N2222A	
C2	100n	SMF/MKT/Wima	R1	1M	1% metalfilm
С3	100n	SMF/MKT/Wima	R2	1M	1% metalfilm
C4	470p	MLCC	R3	10k	1% metalfilm
C5	4n7	SMF/MKT/Wima	R6	1k	1% metalfilm
C6	8n2	SMF/MKT/Wima	R7	22k	1% metalfilm
C7	10n	SMF/MKT/Wima	R8	10k	1% metalfilm
C8	47n	SMF/MKT/Wima	R9	4k7	1% metalfilm
C9	47n	SMF/MKT/Wima	R10	10k	1% metalfilm
C10	5n6	SMF/MKT/Wima	R11	1k	1% metalfilm
C11	18n	SMF/MKT/Wima	R12	4k7	1% metalfilm
C12	3n3	SMF/MKT/Wima	R13	100k	1% metalfilm
C13	470n	SMF/MKT/Wima	R14	15k	1% metalfilm
C14	470n	SMF/MKT/Wima	R15	10k	1% metalfilm
C15	100n	SMF/MKT/Wima	R16	10k	1% metalfilm
C16	100u	Electrolytic 16V+	R17	100k	1% metalfilm
C17	47u	Electrolytic 16V+	R19	10k	1% metalfilm
C18	1n	SMF/MKT/Wima	R20	10k	1% metalfilm
C19	10u	Electrolytic 16V+	R21	10k	1% metalfilm
C20	1u	Electrolytic 16V+	R22	10k	1% metalfilm
C21	1u	Electrolytic 16V+	R23	10k	1% metalfilm
C22	100n	SMF/MKT/Wima	R24	1M	1% metalfilm
IC1	TL074CN		R25	1M	1% metalfilm
IC2	TL074CN		R26	10R	1% metalfilm
J1	XLR Out	Male Chassis	R27	10k	1% metalfilm
P1	B100k	Mid Response	R28*	jumper	1% metalfilm
P2a	B100k	Resonance	R29*	NC	1% metalfilm
P2b*	NC	Jumper 2-3	SW1	DP3T (on-on-on)	Output select
P3	B100k	High Response	SW2	SPDT	Ground lift
P4	A500k	Cabsize	VR1	B200k	XLR pad
P5	B100k	Punch			
P6	A100k	Gain	D1	1N5817	

* Optional parts (see modifications section)

All parts need to be 16V+ rated

A=Log, B=Lin, C=Rev. Log

Manufacturers and product names are mentioned solely for circuit identification, and where applicable their trademarks are the property of their respective owners who are in no way associated or affiliated with the author. No cooperation or endorsement is implied.

Build sequence

Soldering this board can be very complicated for some people since the solder pads are very close together. Use a magnifying glass to make the job easier.

The trick to soldering a PCB is to work from small to big components. My building sequence suggestions in this section are based on the parts I used myself. Sometimes some components are smaller (or bigger) so always use your own common sense and change the order accordingly. Usually capacitors can differ a lot in size depending on their rating and value.

Note: Do not blow on your solder in an attempt to cool it down. That can result in a bad join that might corrode! Also take extra care not to short components.

Start by soldering the jumpers (if needed) and resistors. If you are building the default configuration (as mentioned in the component section on p4) you will need to place a jumper for **R28** and between pad 2 and 3 (the round pads, not the square pad!) of **P2b.** You can create a jumper using a spare piece of lead from a resistor or diode. Next comes the diode.

If you want to experiment with another transistor for Q1 then you could socket it instead of soldering it to the board. You'll need a some 20 SIL sockets, break off the sockets and solder them to the board. Now is the time to solder the sockets for the ICs. Place the transistor and ICs not before you are finished with <u>all</u> soldering and <u>off board wiring</u>!

Now continue by soldering the SMF and MKT capacitors then solder the internal trimpot (**VR1**). Finish with soldering the transistor (if not socketed) and the Electrolytics. Note that the orientation of the transistor (2N2222A) on the PCB is 180 degrees reversed!

I suggest you now drill the holes in your enclosure so you can use it during the off board wiring and to correctly fit the pots to the backside of the PCB.

Note: Really take some time to determine where to place the pots, switches, jacks and PCB in the enclosure before you start drilling. **Measure twice, drill once**.

You are almost ready to rock, well... not really. The difficult part starts now.

Besides the components mentioned in the components table, you will need:

- 1 mono input jack, 1 stereo output jack.
- **3PDT footswitch** (9 pins)
- 2,1mm DC jack (isolated).
- 22 gage stranded hook-up wire.
- LED holder. This enables you to mount the LEDs in the enclosure.
- LED (3mm or 5mm depending on your taste). This will be the status LEDs
- Hammond 1590BB case (or similar) in your favorite color. This case will fit tightly and leaves no room for error! If you need more room you could consider using a Hammond 1590XX.

Drill template

After drilling the holes, insert the potentiometers in the enclosure and then insert them in the back of the PCB.

You can break off the pin I marked with the yellow circle with a small pair of pliers. The rectangle pad marks the pad for **pin 1**.

If all fits well you can solder the potentiometers to the board.

Off board wiring

R led is a **3k3/4k7** resistors. You can change the value depending on the type of LED you use but 4k7 is safe enough for almost all LEDs @9V.

Note that the diagram is using star wiring for the ground connection. This requires that the output jack makes very good contact to the enclosure! If this is not possible, you can connect a wire to the sleeve of the output jack and the sleeve of the input jack.

VR1 (XLR Padding) is by default a PCB mounted potentiometer as it is mostly used as set and forget. If you want to, you can make it and externally controllable potentiometer using a **16mm Alpha pot B250k**, The pins configuration is marked on the PCB and correspond to the pinout as shown on the potentiometer on the previous page.

Switches

SW1

SW1 determines the output of the PCB. You can choose to attach a switch or to hardwire it. If you attach a DP3T on-Z-on switch, you can choose between normal out via the output jack, output via both XLR and normal out and XLR out only.

Hardwired

Normal out

XLR out

Normal and XLR out

DP3T switch

When you are using a DP3T on-Z-on, you must test which pins are connected in the middle position. There are 2 types of switches which are shown below in the middle position:

Find out which one you have and wire accordingly. To prevent a floating output, I would advise to reverse pin 1 and 2 (either on the PCB or on the switch). Also connect pin 3 and 6 <u>on the switch</u> to ground. This way you ground the effect output and/or XLR output when it is not in use. You could use the spare ground next to the output on the PCB. It will look like this:

XLR Out and SW2

You can use the XLR out with or without a ground lift switch (SW2).

If you do not want to use the ground lift then you can leave out C22 and R26.

Turning VR1 will pad the output of the XLR if it is too loud.

The XLR chassis is shown upside down and looking at it from the rear.

Ground lift

No ground lift

Modifications

The PCB was designed to enable you to make several different mods. There were a lot of experiments with making the effect sound even better, mainly by Bajaman. All these versions have their good sides so you can build any of them by using only this single board. The only thing you will have to do is choose. I personally like the optimized version the best.

The components section on page 4 reflects the traced original. The following paragraphs reflect the modded version of the original followed by an optimized version.

Modded version

Name	Value	Comment	Name	Value	Comment
C1	470n	SMF/MKT/Wima	Q1	2N2222A	
C2	100n	SMF/MKT/Wima	R1	1M	1% metalfilm
C3	100n	SMF/MKT/Wima	R2	1M	1% metalfilm
C4	470p	MLCC/Ceramic	R3	10k	1% metalfilm
C5	4n7	SMF/MKT/Wima	R6	1k	1% metalfilm
C6	8n2	SMF/MKT/Wima	R7	22k	1% metalfilm
C7	4n7	SMF/MKT/Wima	R8	10k	1% metalfilm
C8	47n	SMF/MKT/Wima	R9	10k	1% metalfilm
C9	47n	SMF/MKT/Wima	R10	10k	1% metalfilm
C10	4n7	SMF/MKT/Wima	R11	470R	1% metalfilm
C11	4n7	SMF/MKT/Wima	R12	4k7	1% metalfilm
C12	680p	MLCC/Ceramic	R13	100k	1% metalfilm
C13	470n	SMF/MKT/Wima	R14	18k	1% metalfilm
C14	470n	SMF/MKT/Wima	R15	39k	1% metalfilm
C15	100n	SMF/MKT/Wima	R16	10k	1% metalfilm
C16	100u	Electrolytic 16V+	R17	100k	1% metalfilm
C17	47u	Electrolytic 16V+	R19	10k	1% metalfilm
C18	1n	SMF/MKT/Wima	R20	10k	1% metalfilm
C19	10u	Electrolytic 16V+	R21	10k	1% metalfilm
C20	1u	Electrolytic 16V+	R22	10k	1% metalfilm
C21	1u	Electrolytic 16V+	R23	10k	1% metalfilm
C22	100n	SMF/MKT/Wima	R24	1M	1% metalfilm
IC1	TL074CN		R25	1M	1% metalfilm
IC2	TL074CN		R26	10R	1% metalfilm
J1	XLR Out	Male Chassis	R27	10k	1% metalfilm
P1	A10k	Mid Response	R28	1k5	1% metalfilm
P2a	B100k	Resonance	R29	2M2	1% metalfilm
P2b	NC	Jumper 2-3	SW1	DP3T (on-on-on)	Output select
P3	B100k	High Response	SW2	SPDT	Ground lift
P4	A500k	Cabsize	VR1	B200k	XLR pad
P5	B100k	Punch			
P6	A100k	Gain	D1	1N5817	

Optimized version

Name	Value	Comment	Name	Value	Comment
C1	470n	SMF/MKT/Wima	Q1	2N2222A	
C2	120n	SMF/MKT/Wima	R1	1M	1% metalfilm
C3	120n	SMF/MKT/Wima	R2	1M	1% metalfilm
C4	4n7	SMF/MKT/Wima	R3	10k	1% metalfilm
C5	47n	SMF/MKT/Wima	R6	1k	1% metalfilm
C6	39n	SMF/MKT/Wima	R7	2k2	1% metalfilm
C7	68n	SMF/MKT/Wima	R8	1k	1% metalfilm
C8	330n	SMF/MKT/Wima	R9	1k	1% metalfilm
С9	330n	SMF/MKT/Wima	R10	1k	1% metalfilm
C10	39n	SMF/MKT/Wima	R11	jumper	1% metalfilm
C11	39n	SMF/MKT/Wima	R12	470R	1% metalfilm
C12	22n	SMF/MKT/Wima	R13	22k	1% metalfilm
C13	4u7	Electrolytic 16V+	R14	1k8	1% metalfilm
C14	470n	SMF/MKT/Wima	R15	3k9	1% metalfilm
C15	100n	SMF/MKT/Wima	R16	10k	1% metalfilm
C16	100u	Electrolytic 16V+	R17	100k	1% metalfilm
C17	47u	Electrolytic 16V+	R19	10k	1% metalfilm
C18	3n3	SMF/MKT/Wima	R20	10k	1% metalfilm
C19	10u	Electrolytic 16V+	R21	10k	1% metalfilm
C20	1u	Electrolytic 16V+	R22	10k	1% metalfilm
C21	1u	Electrolytic 16V+	R23	10k	1% metalfilm
C22	100n	SMF/MKT/Wima	R24	1M	1% metalfilm
IC1	TL074CN		R25	1M	1% metalfilm
IC2	TL074CN		R26	10R	1% metalfilm
J1	XLR Out	Male Chassis	R27	10k	1% metalfilm
P1	A10k	Mid Response	R28	470R	1% metalfilm
P2a*	B10k	Resonance	R29	NC	1% metalfilm
P2b*	B10k	Resonance	SW1	DP3T (on-on-on)	Output select
P3	B10k	High Response	SW2	SPDT	Ground lift
P4	A50k	Cabsize	VR1	B200k	XLR pad
P5	B10k	Punch			
P6	A10k	Gain	D1	1N5817	

* P2a/b are formed by a single stereo B10k potentiometer

Troubleshooting

All PCB's have been 100% factory e-tested and out of every batch I receive I build an effect to double check, so there should not be a connection problem on the PCB itself.

The board is not working (at all), what now?

- Check if your 9V is plugged in correctly (and/or soldered correctly on the board). Pay special attention to the polarity.
- Check that you <u>oriented</u> the capacitors, IC's ,transistors and diodes the right way. SMF, MKT and ceramic capacitors as well as resistors do not need to be oriented. A likely sign of incorrect capacitors and/or orientation is when an effect is sputtering, rumbling or "motorboating".
- Check if you used the <u>correct values</u> of the components. For resistors you can look here: <u>http://www.diyaudioandvideo.com/Electronics/Color/</u>
- Double and triple check your soldering! A loose or cold solder can be really bad for your board.
- Replace the IC and/or transistors, one might be defective. Before doing that first unplug the 9V and wait for 5 seconds.
- Check that you have good/high grade components. A lot of Chinese sourced parts are fakes (especially high end opamps, audio capacitors, vintage diodes and transistors) so be careful that you source your parts from reliable suppliers.

Schematics

Cabulator v1.0 Drawn by: Arnold Dikstaal (2018) Based on DSM Noisemaker MultiCabSim (with thanks to freestompboxes.org) and Tataylino's Simple DI Box

Manufacturers and product names are mentioned solely for circuit identification, and where applicable their trademarks are the property of their respective owners who are in no way associated or affiliated with the author. No cooperation or endorsement is implied.

Manufacturers and product names are mentioned solely for circuit identification, and where applicable their trademarks are the property of their respective owners who are in no way associated or affiliated with the author. No cooperation or endorsement is implied.

15